
Chapter 14

The Genetic Algorithm

Kwang_Y_Lee@baylor.edu

Chapter Contents

14.1 Biological Evolution . 615

14.2 Representing the Population of Individuals 616

14.2.1 Strings, Chromosomes, Genes, Alleles, and Encodings 616

14.2.2 Encoding Examples . 617

14.2.3 The Population of Individuals . 619

14.3 Genetic Operations . 620

14.3.1 Selection . 621

14.3.2 Reproduction Phase, Crossover . 622

14.3.3 Reproduction Phase, Mutation . 625

14.4 Programming the Genetic Algorithm 626

14.4.1 Pseudocode for a Simple Genetic Algorithm 626

14.4.2 Alternative Sequencing of Operations 627

14.4.3 Representations, Complexity, Termination, and Initialization 628

14.5 Example: Solving an Optimization Problem 630

14.5.1 Genetic Algorithm Design . 631

14.5.2 Algorithm Performance and Tuning . 631

14.6 Approximations to Reduce Algorithm Complexity 636

14.6.1 Reducing Algorithm Complexity . 636

14.6.2 Crossover Option 1 . 637

14.6.3 Crossover Option 2 . 638

14.7 Exercises and Design Problems . 639

Kwang_Y_Lee@baylor.edu

14.1 Biological Evolution 615

Darwin pioneered the idea that biological organisms develop and adapt over
long periods of time via “descent with modification.” For example, organism
“parents,” each with their own genetic makeup, mate, and their children’s ge-
netic makeup is a mixture of their parents so that often in appearance, you
see characteristics of both parents (ideas originally studied by Mendel for va-
rieties of garden peas). Sometimes, there are molecular “mutations” where an
abnormal gene arises, which then affects the formation of the child. Both the
mating and the mutations result in children growing up to be more or less fit to
survive and mate in the environment that they live in. Children who are more
fit tend to have more offspring, while children who are less fit often do not get
the chance to mate, or have fewer offspring. There is then a “natural selection”
that proceeds gradually over time so that populations evolve to be more fit for
their environment.

The genetic algorithm (GA) is a computer simulation that incorporates ideas
from Darwin’s theory on natural selection, and Mendel’s work in genetics on in-
heritance, and it tries to simulate natural evolution of biological systems. From
an engineering perspective, the genetic algorithm is an optimization technique
that evaluates more than one area of the search space and can discover more
than one solution to a problem. (Some would call it a type of stochastic direct
search method.) In particular, it provides a stochastic optimization method
where, if it “gets stuck” at a local optimum, it tries, via multiple search points,
to simultaneously find other parts of the search space and “jump out” of the
local optimum to a global one that represents the highest fitness individuals.

Evolution is the theory and mechanism that is ubiquitous and fundamental
to all of biology (bacteria, plants, and animals are all subject to the mechanisms
of evolution). One would expect it to have a similar pervasive role in all of
intelligent control. As discussed in this part, it applies to evolution of neural,
fuzzy, expert, planning, attentional, and learning systems.

14.1 Biological Evolution

The basic process of biological evolution was explained in Section 2.5 in Part I
on page 80 and it would be good to review that material before proceeding.
Here, however, we also give a brief overview of evolution in biological systems
so that you can easily form appropriate analogies to biological systems as you
learn about genetic algorithms. At the basis of evolution lies selection, mating,
and mutation, and each of these is outlined next.

“Survival of the fittest” refers to fitness in terms of reproductive success.
Natural selection is the process where organisms with higher reproductive suc-
cess generate offspring, and hence, propagate their DNA through time. Less
fit individuals do not have offspring (or have fewer of them) and hence can be-
come extinct over time. For instance, consider the cormorant (large fish-eating
seabirds that catch their prey under water). There are more than one species of
this bird. The one found on the coast of South America has sufficient wingspan
to fly, but the only member of its family that does not fly is the “flightless”

Kwang_Y_Lee@baylor.edu

616 The Genetic Algorithm

cormorant that is found on the remote Galapagos Islands (part of Ecuador),
which are quite far from mainland South America in the Pacific Ocean. There
are no natural predators on the islands and a plentiful supply of fish immedi-
ately offshore. Its loss of flight does not seem to have harmed them, and in fact
can be viewed as beneficial since then it does not have to use the extremely

It is often useful to think
of the environment as
the designer of the
organism.

energy-expensive activity for obtaining food. Apparently, there was a selective
pressure on wing length that drove the evolutionary history of the flightless cor-
morant. This example illustrates the powerful force that selection provides in
“designing” organisms.

Mating and reproduction drive evolution. Mating is a process of mixing
(combining) chromosomes of the parents, and it tends to “homogenize” the
gene pool of the population. Different parts of chromosomes from each parent
are combined in a child. It is via this swapping of genetic material on the chro-
mosomes that a child inherits some characteristics of each parent (and thereby,
as you would imagine, characteristics of each grandparent). On average we may
think of each individual as being composed of half of one parent and half of
the other, one fourth of each grandparent, and so on. This swapping of genetic
material, and hence blending of outward characteristics, is apparent in many
living organisms that mate. For example, for some types of corn, pollination
from a dark colored corn stalk to a corn stalk with a “white” gene bears an ear
of corn that is half dark and half white.

Mutations result in variations in the offspring that result from mating. The
mutation rate is dictated by the probability of error in gene replication in biolog-
ical systems (and certain “mutagens,” whose source can lie in the environment,
can affect this rate). While we typically think of mutations as something unde-
sirable in biological systems (e.g., some may think of “mutants” in science-fiction
movies), they can also lead to more fit individuals (i.e., the mutation may rep-
resent a jump to a region of the space where the reproductive fitness increases
significantly).

14.2 Representing the Population of Individuals

The “fitness function” measures the fitness of an individual to survive, mate, and
produce offspring in a population of individuals for a given environment. The
genetic algorithm will seek to maximize the fitness function J̄(θ) by selecting
the individuals that we represent with θ (note that we place the bar over the
cost function to emphasize that we seek to maximize this function, where we
always sought to minimize “J” in the studies on optimization for approximation
in Part III).

14.2.1 Strings, Chromosomes, Genes, Alleles, and Encod-
ings

To represent the genetic algorithm in a computer, we make θ a string. A string
represents a chromosome in a biological system and one is shown in Figure 14.1.

Kwang_Y_Lee@baylor.edu

14.2 Representing the Population of Individuals 617

A chromosome is a string of “genes” that can take on different “alleles.” In a
computer, we often use number systems to encode alleles. Here, we adopt the
convention that a gene is a “digit location” that can take on different values
from a number system (i.e., different types of alleles).

We encode the
parameters of the
optimization problem on
the chromosome, which
can simply be a sequence
of base-10 numbers.

Gene = digit location

Values here = alleles

String of genes = chromosome

Figure 14.1: String for representing an individual.

In a base-2 number system, alleles come from the set {0, 1}, while in a base-
10 number system, alleles come from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Hence,
a binary chromosome has zeros or ones in its gene locations. As an example,
consider the binary chromosome

1011110001010

which is a binary string of length 13. If we are seeking to optimize parameters
of a system that come in a base-10 number system, then we will need to encode
the numbers into the binary number system (using the standard method for
the conversion of base-10 numbers to base-2 numbers). We will also need to
decode the binary strings into base-10 numbers to use them. Here, we will
develop the genetic algorithm for base-2 or base-10 number systems, but we will
favor the use of the base-10 representation in our examples, since encoding and
decoding is simple in that case (and it can be computationally expensive for
online, real-time applications if the proper representation is not used).

As an example of a base-10 chromosome, consider

8219345127066

which has 13 gene positions. For such chromosomes we add a gene for the sign
of the number (either “+” or “−”) and fix a position for the decimal point. For
instance, for the above chromosome we could have

+821934.5127066

where there is no need to carry along the decimal point; the computer will just
have to remember its position. Note that we could also use a floating point
representation where we could code numbers in a fixed-length string plus the
number in the exponent. The ideas developed here work just as readily for this
number representation system as for standard base-2 or base-10.

14.2.2 Encoding Examples

It is possible to encode many different problems so that artificial evolution can
be applied. We discuss a few representations here, using a base-10 number
system, that are particularly relevant to the field of intelligent control.

Kwang_Y_Lee@baylor.edu

618 The Genetic Algorithm

Proportional-Integral-Derivative Controllers

Suppose that you want to evolve a proportional-integral-derivative (PID) con-
troller (e.g., using a fitness function that quantifies closed-loop performance and
is evaluated by repeated simulations). In this case, suppose that we have three
gains, Kp, Ki, and Kd, and that at some time we have

We can encode a wide
variety of structures
(e.g., controllers) into a
form that the genetic
algorithm can operate
on; hence, the genetic
algorithm is a very
general optimization tool
(and this creates
potential for its misuse).

Kp = +5.12, Ki = 0.1, Kd = −2.137

then we would represent this in a chromosome as

+051200+ 001000− 021370

which is a concatenation of the digits, where we assume that there are six digits
for the representation of each parameter (two before the decimal point and four
after it) plus the sign digit (this is why you see the extra padding of zeros).
The computer will have to keep track of where the decimal points are. We see
that each chromosome will have a certain structure (its “genotype” in biological
terms, and the entire genetic structure is referred to as the “genome”). Each
chromosome represents a point in the search space of the genetic algorithm.
Here, we will use the term “phenotype” from biology to refer to the whole
structure of the controller that is to be evolved; hence, in this case the phenotype
is

Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd
de(t)
dt

where e = r−y is the error input to the PID controller, r is the reference input,
and y is the output of the plant.

Clearly, a similar approach can be used to encode lead-lag compensators,
state feedback controllers, nonlinear controllers, adaptive controllers, and so on.

Elements of Decision Making

In this case, you simply concatenate the parameters of the fuzzy or neural system
that you would like to evolve. For instance, for a Takagi-Sugeno fuzzy system
you may simply encode the consequent parameters, or you may want to also
encode the membership function parameters (centers and spreads). Similarly,
for a neural network, you could encode all the weights and biases. Hence, in this
case we have θ defined similar to the case where we adjust it with least squares
or gradient methods (except here, θ is often treated as a string of concatenated
parameters, rather than a vector of parameters).

Another interesting, and useful, possibility to consider is the case when you
encode the “structure” of the fuzzy or neural system. For instance, you may
encode the number of rules, different forms of consequent functions (e.g., dif-
ferent nonlinearities), different membership functions (e.g., both Gaussian and
triangular), different inference methods (e.g., use of product or minimum in
premise quantification with fuzzy logic), or different defuzzification methods

Kwang_Y_Lee@baylor.edu

14.2 Representing the Population of Individuals 619

(e.g., center-of-gravity and center-average). In a neural network you could en-
code the number of layers, number of neurons in each layer, existence of con-
nections, methods to combine the inputs to the activation function (e.g., linear,
polynomial functions of the inputs, other nonlinear functions), and activation
function types (e.g., logistic, hyperbolic tangent, linear). Sometimes you may
want to encode certain characteristics of both fuzzy and neural systems (e.g.,
the number of rules and neurons), and then allow them to coexist within a
population.

In these cases, you can evolve the structure of the fuzzy or neural system.
The genetic algorithm should be viewed as a very general optimization tool
that can be used to adapt both parameters and structure of intelligent systems
(of course, structure can be quantified with parameters and this is often done
in practice). Indeed, many think of the genetic algorithm as having its most
natural role in the adjustment (or design) of structure of systems rather than
parameter tuning, which is often associated with learning over a lifetime. Next,
we discuss some very general ways to encode higher-level cognitive functions.

Just like the fuzzy system, the number of rules used by an expert controller
can be encoded. Moreover, all the other functional components can be encoded,
such as the conflict resolution strategies. For planning systems, we could encode
the look-ahead horizon length, the models used for projecting ahead, and so
on. For attentional systems, we can make similar general encodings (e.g., on
response times of refocusing, or intensity levels needed to evoke a response).

14.2.3 The Population of Individuals

Next, we develop a notation for representing a whole set of individuals (i.e.,
a population). Let k denote the generation number. Let θji (k) be a single

A population is a set of
candidate solutions
(chromosomes).

parameter at time k (a fixed-length string with sign digit). Here, we number
the chromosomes and the superscript j refers to the jth chromosome. Also, we
number the “traits” on each chromosome. (Note that strictly speaking, a trait
in a biological system is most often thought of as a property of the phenotype,
like hair or eye color, while in our systems, as in the PID controller example
above, genes, which are digits of parameters, are “expressed” as traits of the
phenotype; hence, we think of strings of genes as being expressed as traits in the
phenotype.) With this, the i subscript on θji (k) refers to the ith trait on the jth

chromosome. Suppose that chromosome j is composed of p of these parameters
(traits).

Let
θj(k) =

[
θj1(k), θ

j
2(k), . . . , θ

j
p(k)

]�

be the jth chromosome. Note that earlier we had concatenated elements in a
string, while here we simply take the concatenated elements and form a vector
from them. We do this simply because this is probably the way that you will
want to code the algorithm in the computer (e.g., in Matlab). We will at times,
however, still let θj be a concatenated string when it is convenient to do so. It
will be clear from the context which form of representation we are using.

Kwang_Y_Lee@baylor.edu

620 The Genetic Algorithm

The population of individuals at time k is given by

P (k) =
{
θj(k) : j = 1, 2, . . . , S

}
(14.1)

(not to be confused with the covariance matrix used in recursive least squares)
and the number of individuals in the population is given by S. We want to pick
S to be big enough so that the population elements can cover the search space.
However, we do not want S to be too big, since this increases the number of
computations we have to perform. In an optimization example below, we will
discuss some issues in the choice of the size of S.

Note that while we will not do so here, you could allow the size of the
population to vary with time (more like it does in nature) and the size of the
population could depend on resources in the environment, competition between
individuals (e.g., as measured by fitness), and physical constraints. Population
size plays a fundamental role in nature. Nature often exploits the use of very
high numbers of individuals and allows for many individuals to be killed so
that population size may vary significantly (at least in some regions). Our
simulations of evolution often do not exploit this due to a lack of computational
resources.

14.3 Genetic Operations

The population P (k) at time k is often referred to as the “generation” of indi-
viduals at time k. Basically, according to Darwin, the most qualified individuals
survive to mate and produce offspring. We quantify “most qualified” via an in-
dividual’s fitness J̄(θj(k)) at time k. For selection, we create a “mating pool”
at time k, something every individual would like to get into, which we denote
by

M(k) =
{
mj(k) : j = 1, 2, . . . , S

}
(14.2)

The mating pool is the set of chromosomes that are selected for mating. Here,
we perform selection to decide who gets in the mating pool, mate the individuals
via crossover, then induce mutations. After mutation we get a modified mating
pool at time k, M(k). Below, we will outline the operations involved in creating
the mating pool, performing mating for individuals in the mating pool, and
subsequent mutations. This will explain how the mj(k) in M(k) above are
created and modified.

To form the next generation for the population, we let

P (k + 1) = M(k)

Evolution occurs as we go from a generation at time k to the next generation at
time k + 1. Hence, in this artificial environment mating is done in parallel and
is synchronized with a clock, which is far different from how it typically occurs
in nature. Parallel asynchronous versions of the algorithm can, however, also
be developed.

Kwang_Y_Lee@baylor.edu

14.3 Genetic Operations 621

14.3.1 Selection

There are many ways to perform selection, but by far the most common one
used in practice is fitness-proportionate selection.

Fitness-Proportionate Selection

In this case, we select an individual (the ith chromosome) for mating by letting
each mj(k) be equal to θi(k) ∈ P (k) with probability

pi =
J̄(θi(k))∑S
j=1 J̄(θj(k))

(14.3)

To clarify the meaning of this formula and hence the selection strategy, you
Selection dictates that
the best points in the
search space should be
given preferential
treatment in specifying
the composition of the
population at the next
step.

can use the analogy of spinning a unit circumference roulette wheel where the
wheel is divided like a pie into S regions where the ith region is associated
with the ith individual of P (k). Each pie-shaped region has a portion of the
circumference that is given by pi in Equation (14.3). You spin the wheel, and if
the pointer points at region i when the wheel stops, then you place θi into the
mating pool M(k). You spin the wheel S times so that S elements end up in
the mating pool and the population size stays constant.

Clearly, individuals who are more fit will end up with more copies in the
mating pool; hence, chromosomes with larger-than-average fitness will embody a
greater portion of the next generation. At the same time, due to the probabilistic
nature of the selection process, it is possible that some relatively unfit individuals
may end up in the mating pool M(k).

Other Selection Strategies

There are many other options that have been considered for selection besides the
fitness-proportionate approach above. For instance, sometimes the individuals
in the population are ranked by order of fitness and a fixed number of the least
fit ones are “killed” and only the ones in the remaining set are used in the
selection process, perhaps with a fitness-proportionate method (this eliminates
the possibility of very unfit individuals from mating). Other times, some subset
of very fit individuals are allowed to get into the mating pool without spins of
the roulette wheel. Such strategies are often called “elitist” strategies since the
individuals who are most fit (the elite ones) are assured to be able to get into
the mating pool. Sometimes there is only one elite individual that is allowed,
and at other times you could allow more than one. Often, when such elitist
strategies are used, the elite individual(s) are allowed to proceed directly to the
next generation, without modification via the crossover and mutation operations
that are discussed next. (In this sense, we can think of the elite individuals as
having an ability to clone themselves so that their “offspring” are exact copies
of themselves.)

Kwang_Y_Lee@baylor.edu

622 The Genetic Algorithm

Using Gradient Information Before or After Selection

There are many relationships between genetic algorithms and other optimization
methods. For instance, there are many stochastic methods for optimization of
nonlinear and nonconvex functions that bear similarities to the genetic algorithm
(see the next chapter). The advantages and disadvantages of these methods
relative to the genetic algorithm tend to be very application dependent, so we
will not comment on relative merits of the methods and which to pick in a
particular situation. There are, however, ways to use ideas from conventional
gradient optimization methods in genetic algorithms and we briefly discuss this
here.

Traditionally, it has been said that one of the key advantages of the genetic
algorithm is that it does not rely on the existence and use of gradient information
(as the gradient methods do). In some contexts, such as for estimation and
control problems, however, it could be that there is useful gradient information
available that you may not want to ignore. For instance, we know that in

Traditional gradient
methods can be
integrated into genetic
algorithms.

adjusting a nonlinear in the parameter approximator (that serves as an estimator
or controller), it can be very difficult for a gradient method to find the global
extremum value since it may get stuck at a local extremum. In such cases, it is
possible that a genetic algorithm can help find the way out of such local extrema
to find the global ones. Now, in such cases, for optimization algorithm design,
you could start with a gradient method and add certain features from the genetic
algorithm (e.g., evolving a population, use of random excursions by random re-
initialization at various steps, etc.). In addition, for your algorithm design, you
could think of the genetic algorithm as the main vehicle for optimization and
interleave gradient updates. To accomplish this, you could, for instance, perform
one or more gradient-based parameter update steps for every individual before
(or after) selection is used to place individuals in the mating pool. In this way,
it is hoped that we gain the benefits of using the directional information used in
the gradient updates, and the benefits of parallel search and random excursions
given by the genetic algorithm. See Section 15.5 at the end of the next chapter
for more discussion on such “interleaved” and hybrid methods. See the “For
Further Study” section at the end of the part for a reference that studies other
approaches.

14.3.2 Reproduction Phase, Crossover

We think of crossover as mating in biological terms, which at a fundamental
biological level involves the process of combining (mixing) chromosomes.

For the computer simulation of evolution, the crossover operation operates on
Crossover adds a
mechanism for both local
and global search, but
near fit individuals.

the mating poolM(k) by “mating” different individuals there. First, you specify
the “crossover probability” pc (usually chosen to be near 1 since, when mating
occurs in biological systems, genetic material is certainly swapped between the
parents). There are many types of crossover (i.e., ways to swap genetic material
on chromosomes), but the simplest one is “single-point” crossover.

Kwang_Y_Lee@baylor.edu

14.3 Genetic Operations 623

Single-Point Crossover

The procedure for single-point crossover consists of the following steps:

1. Randomly pair off the individuals in the mating pool M(k). There are
many ways to do this. For instance, you could simply pick each individual
from the mating pool and then randomly select a different individual for
it to mate with. Or, you could just have all the individuals mate with the
ones that are right next to each other (where “right next to each other”
is defined by how you label the individuals with a number system). In
this approach, if there are an odd number of individuals in M(k), then,
for instance, you could simply take the last individual and pair it off with
another individual who has already been paired off (or you could pair it
off with the individual with the highest fitness).

2. Consider the chromosome pair θj , θi that was formed in step 1. Generate
a random number r ∈ [0, 1].

(a) If r < pc, then cross over θj and θi. To cross over these chromosomes,
select a “cross site” at random and exchange all the digits to the right
of the cross site of one string with those of the other. This process is
pictured in Figure 14.2. In this example, the cross site is position 5
on the string (be careful in how you count positions), and hence, we
swap the last eight digits between the two strings. Clearly, the cross
site is a random number that is greater than or equal to 1, and less
than or equal to the number of digits in the string minus 1.

θ i 1 2 3 4 5 6 7 8 9 10 11 12 13

θ j 1 2 3 4 5 6 7 8 9 10 11 12 13

Cross site

Switch these two parts of the strings

Figure 14.2: Crossover operation example.

(b) If r > pc, then we will not cross over; hence, we do not modify the
strings, and we go to the mutation operation below.

3. Repeat step 2 for each pair of strings in the mating pool M(k).

As an example, suppose that S = 10 and that in step 1 above, we randomly
pair off the chromosomes. Suppose that θ5 and θ9 (j = 5, i = 9) are paired off
where

θ5 = +2.9845

and
θ9 = +1.9322

Kwang_Y_Lee@baylor.edu

624 The Genetic Algorithm

Suppose that pc = 0.9 and that when we randomly generate r, we get r = 0.34.
Hence, by step 2 we will cross over θ5 and θ9. According to step 2, we randomly
pick the cross site. Suppose that it is chosen to be position 3 on the string
(include the sign as a position). In this case, the strings that are produced by
crossover are

θ5 = +2.9322

and
θ9 = +1.9845

Besides the fact that crossover helps to model the mating part of the evo-
lution process, why should the genetic algorithm perform crossover? Basically,
the crossover operation perturbs the parameters near good positions to try to
find better solutions to the optimization problem. It tends to help perform a
localized search around the more fit individuals (since on average the individ-
uals in the mating pool M(k) at time k should be more fit than the ones in
the population P (k) at time k) that could be near each other on the fitness
landscape. However, on a complex landscape, two relatively well-fit individuals
may be on very different parts of the landscape, so that an offspring may lie
“between” them (or extrapolated along a line connecting the two, but not too
far away) at points that represent poor fitness. In this case, you would not think
of crossover as producing local search. Indeed, in this situation it results in a
global type of search.

Other Crossover Methods

There are many other crossover methods that have been studied. For instance,
you could use a two-point crossover, where you pick two crossover points on
each chromosome and swap the elements in between the two points. Or, more
generally, you could have a multi-point crossover where you have one or more
crossovers per trait. Generally, when elitism is used, the elite individuals would
not undergo any type of crossover.

Another option is to make the crossover rate change with time. For instance,
you could start with pc = 1 and then reduce it as the overall fitness of the
population (as measured by, for example, the average of the fitness values of
all the individuals) increases. This way, there will be fewer explorations into
close-by regions when we are likely to be near a local maxima. Sometimes,
however, this can cause “premature convergence” where the algorithm locks on
to some values and does not properly explore other parts of the space to find
the global maximum. Sometimes, for online applications, especially when J̄ is
time-varying, you want to keep the crossover rate at pc = 1 for the entire time,
since this will ensure good exploration of the space. Note that you can think of
the crossover probability as being under genetic control so that its value could
be adapted also.

In other methods, similarity measures between individuals are developed and
only similar individuals are allowed to mate and hence, cross over (you can then
think of the population as having multiple species, with mating only within

Kwang_Y_Lee@baylor.edu

14.3 Genetic Operations 625

species). This may be a way to cope with having multiple types of structures
(e.g., fuzzy and neural systems) within a population. Or, you could just allow
individuals of similar fitness to mate, or you could pick the most fit individual
and have everyone else mate with that one.

Sometimes, you may want to “spatially” restrict mating so that only those
individuals who are “close” (e.g., with close defined in terms of the Euclidean
distance between two individuals) are allowed to mate and swap genetic material
(otherwise it is possible that two very different individuals mate). This would
then restrict crossover to a local type search.

14.3.3 Reproduction Phase, Mutation

Like crossover, mutation modifies the mating pool (i.e., after selection has taken
place). The operation of mutation is normally performed on the elements in the
mating pool after crossover has been performed. The biological analog of our
mutation operation is the random mutation of genetic material. Again, there
are many ways to perform mutations. Below, we will discuss the most common
methods.

Mutation provides a
mechanism to jump out
of local maxima and to
randomly explore local
and wide areas of the
search space.

Gene Mutations

To perform mutation in the computer, first choose a mutation probability pm.
With probability pm, change (mutate) each gene location on each chromosome
randomly to a member of the number system being used. For instance, in a
base-2 genetic algorithm, we could mutate

1010111

to
1011111

where the fourth bit was mutated to one. For a base-10 number system, you
would simply pick a number at random to replace a digit, if you are going to
mutate a digit location (normally we do not consider a replacement to be valid
if we replace a digit with the same value).

Besides the fact that this helps to model mutation in a biological system, why
should the genetic algorithm perform mutation? Basically, it provides random
excursions into new parts of the search space. It is possible that we will get
lucky and mutate to a good solution. It is the main mechanism (crossover can
also help) that tries to make sure that we do not get stuck at a local maxima
and that we seek to explore other areas of the search space to help find a global
maximum for J̄(θ). Usually, the mutation probability is chosen to be quite small
(e.g., less than 0.01), since this will help guarantee that all the individuals in
the mating pool are not mutated, so that any search progress that was made is
lost (i.e., we keep it relatively low to avoid degradation to exhaustive search via
a random walk in the search space).

Kwang_Y_Lee@baylor.edu

626 The Genetic Algorithm

Keep in mind that we can think of mutation as providing both a local and
global search component to the genetic algorithm. If, for instance, the mutation
of a gene at a particular location on the chromosome represents a small (large)
magnitude change, then a random local (global, respectively) search behavior
is exhibited.

Other Mutation Methods

Sometimes, you could mutate an entire trait (i.e., a set of genes). Other times,
you may want to restrict mutation by only allowing certain genes, traits, or
individuals to be mutated. There could be reasons to vary the mutation rate;
indeed, in biological systems, the mutation rate is under genetic control (i.e., it
could evolve to an optimal level to make sure that the population can properly
adapt to its environment). As an example, in some applications you may want
to start with a relatively high mutation rate and then decrease the mutation
rate as the overall fitness of the population increases. Other times you may
simply want to code the mutation rate in a chromosome and try to evolve it.

In applications where the fitness function is fixed in time, you often do not
want to have a great reliance on mutation in generating new solutions, as it
is by simple luck that mutation succeeds. However, when the fitness function
changes with time (e.g., in biological “coevolution”), you may want a higher
mutation rate to ensure that many options are considered. For instance, in
online applications where the fitness function is time-varying, there is sometimes
a need for an exceptionally high mutation rate to ensure that you do not at
any point get stuck in a local maxima (since the actual maxima points can
be changing) and that you actively pursue many different solution options so
as to ensure active adaptation. You have to be careful, however, not to have
the mutation rate too high or any search progress made by the algorithm at
earlier stages can be destroyed. Also, typically in such online approaches, an
“elitism” strategy is used to ensure that at least one good solution is available
at all times (i.e., the elite individual is not subjected to any mutations). Even in
situations where the fitness function is not time-varying, elitism has been used
very effectively as a way to keep the best solution available while searching for
others (this will be illustrated in Section 14.5 for an optimization problem).

14.4 Programming the Genetic Algorithm

In this section we briefly discuss how to code the genetic algorithm, issues you
encounter in choosing the method to code it, memory and computation time
requirements, and termination and initialization issues.

14.4.1 Pseudocode for a Simple Genetic Algorithm

To summarize the operations of the genetic algorithm, and provide some guid-
ance on how to implement the algorithm in a computer, we provide some high-
level pseudocode that could be useful in programming the genetic algorithm in

Kwang_Y_Lee@baylor.edu

14.4 Programming the Genetic Algorithm 627

any computer language. Here, we assume for convenience that we use fitness-
proportionate selection, single-point crossover with probability pc (below, pc),
gene mutation with probability pm (below, pm), and we terminate after some
fixed number of iterations, Nga (below, Nga).

1. Define the GA parameters (e.g., crossover and mutation probability, pop-
ulation size, termination parameters).

2. Define the initial population P (0).

3. For k = 1 to Nga (main loop for producing generations).

Compute the fitness function for each individual.

Selection: From P (k), form M(k), the mating pool at iteration k, using
fitness-proportionate selection.

Reproduction: For each individual in M(k), select another individual in
M(k), mate the two via crossover with probability pc, mutate each
gene position with probability pm. Take the S children produced by
this process, and put the children in P (k + 1), the next generation.

4. Next k (i.e., return to step 3).

5. Provide results.

Clearly this only provides a high-level view of the operation of the genetic
algorithm. The details of the various steps depend on how you design your
particular genetic algorithm and on the programming language you use.

14.4.2 Alternative Sequencing of Operations

The above pseudocode shows one common way to implement the GA. There
are many possible variations on this approach. First, you could use any of the
options for fitness, crossover, and mutation listed earlier. Moreover, the very
way that the steps are sequenced is sometimes different from shown above.

For instance, note that one common way to implement the GA is to use se-
lection to choose two individuals, then when the two parents are used in mating,
they are allowed to form two children via crossover, and these children are both
subjected to mutation and kept in the next generation (if the population size S
is odd, then one child is randomly removed). In this way, the genetic material
of the two parents is not lost. Above, when a parent mates, it produces one
child who will, in general, only have part of each parent’s genetic material while
the other part is lost (this is what generally happens in biological systems).

Next, note that with the above approach, there are two ways that we could
end up with identical individuals in the mating pool at any iteration:

1. Due to the way that fitness-proportionate selection works, the same indi-
vidual (e.g., the most fit one) can have more than one copy of itself in the
mating pool.

Kwang_Y_Lee@baylor.edu

628 The Genetic Algorithm

2. Two individuals could have different ancestors, but just happen to end up
with the same genetic makeup due to crossover and mutation operations
(e.g., by random chance two individuals’ genetic makeup could be the
same).

With normal choices for representations and parameters, case 1 would be much
more common than case 2. Using a biological system analogy, it seems satis-
factory to mate two individuals with different ancestry (ignoring that in most
species it takes a male and female to mate); however, if they were simply due to
the multiple copies of one individual getting in the mating pool due to selection,
it seems inappropriate. In either case, note that if the individual happens to
mate with itself, then crossover has no effect, although mutation still does. Some
researchers like to avoid this situation altogether and one way to do this, is to
allow only different individuals to mate (and if they are all the same, then sim-
ply terminate). In this case, the above pseudocode would have to be modified to
represent the addition of the operations to ensure no identical individuals mate.
Note that if you use the approach discussed above where you do not generate
the whole mating pool at one time, and just two parents, you could generate
one parent, then generate the other one with selection by repeating the process
until a different individual is generated. Of course, in this case that would not
be a pure fitness proportionate selection approach.

Finally, note that you may want to choose the method based on your un-
derstanding of the manner in which evolution occurs in biological systems in
nature. However, we would emphasize that any of the variations described here
are likely only very rough approximations of what is actually happening in na-
ture; hence, in this book we will focus more on the view of the GA as a stochastic
optimization method. If one way of defining and sequencing operations works
better for some application, we will accept it whether or not it models some bi-
ological system (i.e., ours is an engineering focus, not one where we are focusing
on the science of computer modeling of biological systems).

14.4.3 Representations, Complexity, Termination, and Ini-
tialization

For programming the genetic algorithm, one issue that you will encounter is
whether to use special “string operations” in a computer language (some have
better features than others in this regard). Such operations allow, for instance,
conversion of numbers to strings and strings to numbers (which, depending on
how you code the GA, you may need, since we need the numbers in string
format to cross over and mutate, and in numeric format for fitness evaluation
to perform selection, and of course, to plot certain results). They may al-
low for concatenation, swapping, and other features that could be useful in a
string-based approach to implementing genetic algorithms. Another approach
to implementing the genetic algorithm is to only use standard numeric repre-
sentations but ones that allow for us to perform crossover and mutation (in this
case, often integer representations are used).

Kwang_Y_Lee@baylor.edu

14.4 Programming the Genetic Algorithm 629

Next, in choosing which number system to use (e.g., base-2 or base-10),
be careful in considering that the parameters will have to be encoded to, and
decoded from, this representation. In some computer languages, there are spe-
cial functions that perform these functions and these can be quite useful in
programming the genetic algorithm.

Finally, note that there is often a need to include parameter constraints and
one way to do this is to use the “projection method” used for the gradient
methods.

In implementation, you are typically concerned with memory and computa-
tion time and there are certain choices that can affect these significantly. First,
due to the structure of the algorithm, it is clear that increasing the size of the
population S will increase both memory and computation time requirements.
In online applications, you typically only execute a fixed number (often one) of
iterations of the genetic algorithm (an iteration in a genetic algorithm is the act
of producing the next generation from the current one using the genetic opera-
tions) per sampling period. Clearly, just as in the case of the gradient methods,
if you are solving, for instance, a function approximation problem, then you
need to carefully consider issues involved in how big a batch of data to process
at each step, and how many iterations to perform per sampling period because
these can significantly affect memory and computation time requirements. Fi-
nally, the choice of the parameters of the genetic algorithm can significantly
affect memory and computation time requirements, simply by how they affect
performance of the algorithm and hence, how fast it finds a solution.

The discussion in the previous section showed how to produce successive
generations and thereby simulate evolution. While the biological evolutionary
process continues, perhaps indefinitely, there are many times when we would
like to terminate our artificial one and find the following:

• The individual of the population—say, θ�(k)—that best maximizes the
fitness function (note that we do not use the notation θ∗ as we reserve
this for a global maximum point if it exists (they exist)). Notice that to
determine this, we also need to know the generation number k where the
most fit individual existed (it is not necessarily in the last generation).
You may want to design the computer code that implements the genetic
algorithm to always keep track of the highest J̄ value, and the generation
number and individual that achieved this value of J̄ .

• The value of the fitness function J̄(θ�(k)). While for some applications
this value may not be important, for others it may be useful (e.g., in many
function optimization problems).

• The average of the fitness values in the population.

• Information about the way that the population has evolved, which areas
of the search space were visited, and how the fitness function has evolved
over time. You may want to design the code that implements the genetic
algorithm to provide plots or printouts of all the relevant genetic algorithm
data.

Kwang_Y_Lee@baylor.edu

630 The Genetic Algorithm

There is then the question of how to terminate the genetic algorithm. There
are many ways to terminate a genetic algorithm, many of them similar to ter-
mination conditions used for conventional (gradient) optimization algorithms.
To introduce a few of these, let ε > 0 be a small number and M1 > 0 and
M2 > 0 be integers. Consider the following options for terminating the genetic
algorithm:

• Stop the algorithm after generating generation P (M1)—that is, after M1

generations.

• Stop the algorithm after at least M1 generations have occurred and at
least M2 steps have occurred where the maximum (or average) value of J̄
for all population members has increased by no more than ε.

• Stop the algorithm once J̄ takes on a value above some fixed value.

Of course, there are other possibilities for termination conditions (see the dis-
cussion in Section 11.1.6). The above ones are easy to implement on a computer
but sometimes you may want to watch the parameters evolve and decide yourself
when to manually stop the algorithm.

By “initialization” of the genetic algorithm, we mean, for instance, how to
select the initial population. (Of course, to start a genetic algorithm, you need
to specify other parameters.) Sometimes, the initial population is simply set to
be random values. Other times, domain-specific information can be useful in
establishing the initial population. Similar to the gradient methods, we generally
expect better algorithm performance if we start with a better initialization.
You should note, however, that unlike gradient methods, we get to initialize
the parameters to S different values if we want. So we can think of the initial
population as a set of best guesses at the solution. If even one of these is close
to the global maximum of J̄ , then it is possible that the performance of the
genetic algorithm will be improved.

14.5 Example: Solving an Optimization Prob-
lem

In engineering design problems, there are many times when it is useful to solve
some sort of optimization problem, since we often try to produce the “best”
designs within a wide range of constraints (which include, e.g., cost). In practical
engineering problems, such optimization problems can be very difficult and at
times it can be useful to turn to the genetic algorithm. In this section, to
illustrate the operation of the genetic algorithm, how to tune its parameters, and
how to program the genetic algorithm, we study its application to a relatively
simple optimization problem.

Suppose, in particular, that we want to find the maximum of the function
shown in Figure 18.10 using a genetic algorithm. Such a surface is sometimes
called a “fitness landscape” by analogy with mountain climbing. Notice that it

Kwang_Y_Lee@baylor.edu

14.5 Example: Solving an Optimization Problem 631

has many hills and valleys that could confuse, for instance, a gradient optimiza-
tion algorithm. We will act as though we do not know an analytical expression
for the underlying function. We assume, however, that we can provide candi-
date solutions to the function, and it will return (in finite time) the fitness of
these candidate individuals. This is a necessary feature for implementing any
genetic algorithm.

14.5.1 Genetic Algorithm Design

The genetic algorithm used to solve this problem was coded in Matlab using a
base-10 encoding. We use two digits before the decimal point and four after it
for a total number of six digits. (Clearly, this constrains the accuracy that we
can achieve in the solution to the optimization problem.)

We will either initialize with a random population (with values uniformly
distributed on the known optimization variable domains) or with all the param-
eters initially at zero. We assume we know the size of the domain that we want
to optimize over (it is [0, 30] for each dimension) and use “projection” to keep
the parameters in this range.

Note that since the function goes below zero in Figure 18.10, we will shift
the whole plot up by a constant (a value of 5 in this case). This will not change
where the extrema occur on the landscape but it will shift the fitness values
computed and displayed. Why perform this “shift”? For our selection method,
we require that we have all positive fitness values since a negative one can result
in a negative probability of being placed in the mating pool.

We use fitness-proportionate selection, single-point crossover, and to pair off
individuals for mating, we pick each one in the mating pool and randomly select
a mate for it. We use gene mutation. We will explore the use of different values
for the population size S, the crossover probability pc, and mutation probability
pm. We will also study the effects of using elitism, with a single elite member.

For a termination criterion, we allow no more than a fixed maximum num-
ber of iterations (here, M1 = 1000). However, we also add another termination
criterion that may stop the algorithm before this maximum number of itera-
tions is achieved. In particular, we terminate the program if the best fitness
in the population has not changed more than ε = 0.01 over the last M2 = 100
generations.

14.5.2 Algorithm Performance and Tuning

In this section, we run the genetic algorithm program under a variety of condi-
tions to provide insights into its operation, and to provide ideas on how to tune
a genetic algorithm’s parameters.

Random Initial Population

To illustrate the operation of the genetic algorithm, we begin with pc = 0.8
and pm = 0.05 and a population size of S = 20. A random initial population

Kwang_Y_Lee@baylor.edu

632 The Genetic Algorithm

is chosen, so that each parameter is uniformly distributed on [0, 30]. To better
view the results of the optimization process, we will plot the contour map of the
function in Figure 18.10 and place points on this plot that represent individuals
at some iteration. Figures 14.3 and 14.4 illustrate the operation of the genetic
algorithm. We see that for these choices, the algorithm performs well, and it

Initialization can
significantly affect
genetic algorithm
performance.

does find the best individual, but then later loses it. Note that if you run the
algorithm again, it may not do as well, since it may be unlucky in its random
initial choices. (This shows why you may want a big population size; if it is big,
it is more likely that it will make at least one good initial choice.) The scatter
pattern shown in Figure 14.3, where there are horizontal/vertical groupings
(bands), is the result of our genetic operator choices (e.g., the group of points
above the global maximum point results from crossover and gene mutation in
one dimension).

0 5 10 15 20 25
0

5

10

15

20

25

x

y

Fitness function (contour map)

Figure 14.3: Contour plot of surface in Figure 18.10.

Initial Population of all Zeros

Here, with all the other parameters the same, we choose an initial population
with all zeros for the parameter values. With this poor initialization, it fails to
find the optimum point (see Figure 14.5) by the time the algorithm terminates.
If you choose a different termination criterion that allows the algorithm to evolve
more generations, it may find a good solution. Also, note that if you run the
algorithm again, it may be the case that it will succeed, since the algorithm
may make some lucky mutations or crossovers that result in better guesses.

Kwang_Y_Lee@baylor.edu

14.5 Example: Solving an Optimization Problem 633

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Generation

B
es

t,
av

er
ag

e,
 a

nd
 w

or
st

 fi
tn

es
s

Best and worst fitness vs. generation

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Generation

B
es

t i
nd

iv
id

ua
ls

Best individuals vs. generation

Figure 14.4: Fitness and optimization parameter evolution.

0 5 10 15 20 25
0

5

10

15

20

25

x

y

Fitness function (contour map)

Figure 14.5: Contour plot of surface in Figure 18.10.

Kwang_Y_Lee@baylor.edu

634 The Genetic Algorithm

Increased Mutation Probability

Next, let pc = 0.8 and pm = 0.1 (a larger value than above) and consider
a population size of S = 20. As you can see in Figures 14.6 and 14.7, with
the higher value for the mutation probability, it fails to lock on to the global
maximum point. Basically, this happens since mutation is destroying good

Large mutation
probabilities can lead to
random and exhaustive
search.

solutions (i.e., it destroys the progress of the method). From this, it should be
clear that if you pick the mutation probability too high, the algorithm executes
what can be considered a “random walk” in the parameter space so, while it
may find a good solution at some point, it may take a long time to do so and
we would basically attribute its success to “dumb luck.”

0 5 10 15 20 25
0

5

10

15

20

25

x

y

Fitness function (contour map)

Figure 14.6: Contour plot of surface in Figure 18.10 with random initial popu-
lation and higher mutation probability.

Decreased Crossover Probability

Next, let pc = 0.5 (a smaller value than above) and pm = 0.05 (i.e., return it to
its earlier value) and consider a population size of S = 20. With the lower value
for the crossover probability, it does less local search between good solutions
(see Figures 14.8 and 14.9). Note that if you make pc = 0.1, it fails to find
a local optimum (at least for one time the algorithm was run). In this case,
it is passing too many individuals through the mating process without mixing
genetic material; hence, it stagnates.

Kwang_Y_Lee@baylor.edu

14.5 Example: Solving an Optimization Problem 635

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Generation

B
es

t,
av

er
ag

e,
 a

nd
 w

or
st

 fi
tn

es
s

Best and worst fitness vs. generation

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Generation

B
es

t i
nd

iv
id

ua
ls

Best individuals vs. generation

Figure 14.7: Fitness and optimization parameter evolution, with random initial
population and higher mutation probability.

Increased Population Size

Next, let pc = 0.8 and pm = 0.05 and consider a population size of S = 40 (i.e.,
twice as big as earlier). With a bigger population size, we still get convergence,
but this shows that increasing its size is not necessarily good (see Figures 14.10
and 14.11). Of course, we have to qualify this statement by saying “for this
run of the program, with these termination criteria, etc.” This simulation was
produced simply to make the point that bigger is not always better (even though
for the population, for some applications, this may generally be true).

Effects of Elitism

Next, let pc = 0.8 and pm = 0.05 and a population size of S = 20. Now, how-
ever, we use elitism with a single elite member. See Figures 14.12 and 14.13.
With elitism we get much quicker convergence (notice that the early termination

In practice, elitism has
often been found to be
useful, especially in
real-time control where
you cannot afford to use
anything but the
best-known controller.

criterion was invoked) since crossover and mutation do not alter the best indi-
vidual. Elitism has, in fact, been found to provide qualitatively similar results
for a variety of applications. Basically, elitism ensures that there is a highly fit
individual that survives in each generation. The other individuals are allowed
to mate with the elite individual, so less fit individuals that do mate with this
very fit individual will tend to have more fit children. This tends to acceler-
ate convergence, while avoiding “premature convergence,” since all the other
individuals are allowed to explore the search space (provided that the other pa-

Kwang_Y_Lee@baylor.edu

636 The Genetic Algorithm

0 5 10 15 20 25
0

5

10

15

20

25

x

y

Fitness function (contour map)

Figure 14.8: Contour plot of surface in Figure 18.10 with random initial popu-
lation and lower crossover probability.

rameters, particularly the mutation rate, are set properly). It tends, for some
applications, to provide a nice trade-off between focusing and exploration.

14.6 Approximations to Reduce Algorithm Com-
plexity

When you start programming genetic algorithms, you often get ideas on how to
modify the algorithm, either to better model how evolution works in nature, or
to improve the performance of the algorithm (which may result in an algorithm
that is successful, but quite unlike anything in nature). In this section, we
briefly study some ways to make approximations to the genetic operations so
that computational complexity of the algorithm can be reduced.

14.6.1 Reducing Algorithm Complexity

First, note that the encoding and decoding, even with a base-10 encoding, causes
extra computations because you must convert the base-10 numbers to strings of
integers and back. The only reason that we needed to do this was because we
needed to perform crossover and mutation. We can, however, approximate these
two operations and get reductions in complexity simply because no conversions
will be necessary. Moreover, when we remove the conversions to strings, we get

Kwang_Y_Lee@baylor.edu

14.6 Approximations to Reduce Algorithm Complexity 637

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Generation

B
es

t,
av

er
ag

e,
 a

nd
 w

or
st

 fi
tn

es
s

Best and worst fitness vs. generation

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Generation

B
es

t i
nd

iv
id

ua
ls

Best individuals vs. generation

Figure 14.9: Fitness and optimization parameter evolution, with random initial
population and lower crossover probability.

all standard operations on vectors so we will then be simply encoding traits
with the natural representation in the computer (e.g., in Matlab, a chromosome
will be a vector with elements that are traits, and the traits are simply the
parameters of the problem).

There are simple ways to
modify the genetic
algorithm so that it still
grossly emulates
evolution, but
computational
complexity is reduced.

For mutation we will perform a simple “trait mutation” where, with prob-
ability pm, we mutate each trait in each individual. If we mutate, we simply
switch the trait to be any number on the known domain of that trait (e.g., for
the optimization problem in the last section, between 0 and 30). With this
approach we will know that mutation cannot generate an out-of-range value so
we will not need to use “projection” to fix it. For other problems, you could
consider simply adding on a random value to the trait, but then this may place
the value out of range, but it can be fixed with projection.

Next, for crossover there are many possibilities. Here, we will consider two
and to illustrate how they work, we will apply them to the function optimization
problem studied in the last section. In both cases, we use pc = 0.8 and pm = 0.05
and a population size of S = 20. A random initial population is chosen, one so
that each parameter is uniformly distributed on [0, 30].

14.6.2 Crossover Option 1

First, we generate a method that approximates what happens when we cross over
strings. In particular, consider an approach where we cross over at a random

Kwang_Y_Lee@baylor.edu

638 The Genetic Algorithm

0 5 10 15 20 25
0

5

10

15

20

25

x

y

Fitness function (contour map)

Figure 14.10: Contour plot of surface in Figure 18.10 with random initial pop-
ulation and increased population size.

“trait site.” We use the standard crossover probability pc and suppose that we
choose to cross over the vectors θi and θj where i �= j and i, j ∈ {1, 2, . . . , S}.
To do this, we generate a random trait site number, say i∗, where 1 ≤ i∗ ≤ p
(where p is the number of traits, i.e., parameters), a random number α ∈ (0, 1),
and let the child θ have

θm = θim

for m = 1, 2, . . . , i∗ − 1,
θi∗ = αθii∗ + (1− α)θji∗

(we think of this as “splitting” the trait at the trait site split point) and

θm = θjm

for m = i∗, . . . , p. When this approach is used, we get the results shown in
Figures 14.14 and 14.15. Notice that the approach finds the maximum point.

14.6.3 Crossover Option 2

Next, we do everything the same as in “crossover option 1” except we perform
crossover differently. Suppose we choose to cross over the vectors θi and θj

where i �= j and i, j ∈ {1, 2, . . . , S}. To do this, we generate a random number
α ∈ (0, 1), and let the child θ be

θ = αθi + (1− α)θj

Kwang_Y_Lee@baylor.edu

14.7 Exercises and Design Problems 639

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Generation

B
es

t,
av

er
ag

e,
 a

nd
 w

or
st

 fi
tn

es
s

Best and worst fitness vs. generation

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

Generation

B
es

t i
nd

iv
id

ua
ls

Best individuals vs. generation

Figure 14.11: Fitness and optimization parameter evolution, with random initial
population and increased population size.

This θ is a point on the line joining θi and θj . It is a simple type of interpolation
between θi and θj . We think of this as “search in the neighborhood” of the two
individuals, which is effectively what crossover tries to do. When this approach
is used, we get the results shown in Figures 14.16 and 14.17. Notice that the
approach finds the maximum point.

14.7 Exercises and Design Problems

Exercise 14.1 (Genetic Algorithms for Optimization): In this problem
you will use the genetic algorithm to solve some simple optimization prob-
lems. You may use the code that is given at the Web site listed in the
Preface.

(a) Suppose that you are given the function

f(x) = x sin(10πx) + 1

which is taken from [352]. Design and implement on a computer a
genetic algorithm for finding the maximum of this function over the
range x ∈ [−0.5, 1]. Plot the best individual, best fitness, and average
fitness against the generation. Plot the function to verify the results.

Kwang_Y_Lee@baylor.edu

640 The Genetic Algorithm

0 5 10 15 20 25
0

5

10

15

20

25

x

y

Fitness function (contour map)

Figure 14.12: Contour plot of surface in Figure 18.10 with random initial pop-
ulation and elitism.

(b) Suppose that you are given the function

f(x) = sinc(x+ 2) =
sin(π(x+ 2))
π(x+ 2)

Design and implement on a computer a genetic algorithm for finding
the maximum of this function over the range x ∈ [−10, 10]. Plot the
best individual, best fitness, and average fitness against the genera-
tion. Plot the function to verify the results.

(c) Suppose that you are given the function

z = 0.8x exp
(−x2 − (y + 1.3)2

)
+ x exp

(−x2 − (y − 1)2
)

+1.15x exp
(−x2 − (y + 3.25)2

)
Design and implement on a computer a genetic algorithm for finding
the maximum of this function over the range x ∈ [−5, 2], y ∈ [−2, 2].
Plot the best individual, best fitness, and average fitness against the
generation. Plot the function to verify the results.

(d) Suppose that you are given the function

z = 1.5sinc(x) + 2sinc(y) + 3sinc(x+ 8) + sinc(y + 8) + 2

Design and implement on a computer a genetic algorithm for finding
the maximum of this function over the range x ∈ [−12, 12], y ∈

Kwang_Y_Lee@baylor.edu

14.7 Exercises and Design Problems 641

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

Generation

B
es

t,
av

er
ag

e,
 a

nd
 w

or
st

 fi
tn

es
s

Best and worst fitness vs. generation

0 20 40 60 80 100 120 140 160 180 200
10

15

20

25

30

Generation

B
es

t i
nd

iv
id

ua
ls

Best individuals vs. generation

Figure 14.13: Fitness and optimization parameter evolution, with random initial
population and elitism.

[−12, 12]. Plot the best individual, best fitness, and average fitness
against the generation. Plot the function to verify the results.

Exercise 14.2 (Approximations of Genetic Algorithms):

(a) Repeat Exercise 14.1(c), but where you use one of the approximations
discussed in Section 14.6. Code the algorithm and evaluate its per-
formance (both complexity and ability to find the global minimum)
in simulation.

(b) Repeat (a) but for Exercise 14.1(d).

Design Problem 14.1 (Design of Genetic Operators for Genetic Al-
gorithms):

(a) Repeat Exercise 14.1(c), but where you use a genetic algorithm with
different genetic operators. You choose which operators to use, but
make the selection, crossover, and mutation operators different from
those coded into the program given at the Web site. Code the algo-
rithm and evaluate its performance (both complexity and ability to
find the global minimum) in simulation.

(b) Repeat (c) but for Exercise 14.1(d).

Design Problem 14.2 (Optimization for FindingMountain Peaks and
Coffee-Growing Regions in Topographical Data for Colombia):

Kwang_Y_Lee@baylor.edu

642 The Genetic Algorithm

0 5 10 15 20 25
0

5

10

15

20

25

x

y

Fitness function (contour map)

Figure 14.14: Contour plot of surface in Figure 18.10 with approximations to
genetic algorithm, crossover option 1.

In this problem, you will study how to use genetic algorithms to search
for the highest mountain peak in a region of the earth. To do this, you
will need to go to the Web site for the book and download a topographical
data set and a program that shows you how to work with the data (the
topographical data were obtained from the US Dept. of Commerce, Na-
tional Inst. of Geophysical Data). The topographical map for the region
around Colombia is given in Figure 14.18. Notice that the data includes
underwater data as negative elevations, and a black line was added at zero
elevation to show roughly where the shorelines are with the Carribean Sea
and Pacific Ocean.

After you download the data set and associated program, study the code to
understand how to work with the data, plot it, and how to interpolate the
data so that you can estimate the elevation for points that are not given
in the data set. Clearly, you do not have analytical gradient information
for this problem; however, you could go to the library or world atlas and
find the solution to the problem for any fixed region on the earth. Hence,
you should simply view the topographical data as providing an interesting
cost function to search over.

(a) Design a genetic algorithm and simulate its operation on the topo-
graphical map of Colombia. As in the chapter, study choices of the
population size and other genetic algorithm parameters.

Kwang_Y_Lee@baylor.edu

14.7 Exercises and Design Problems 643

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Generation

B
es

t,
av

er
ag

e,
 a

nd
 w

or
st

 fi
tn

es
s

Best and worst fitness vs. generation

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

30

Generation

B
es

t i
nd

iv
id

ua
ls

Best individuals vs. generation

Figure 14.15: Fitness and optimization parameter evolution, with approxima-
tions to genetic algorithm, crossover option 1.

(b) What is the highest point on the map? Does this correspond to what
a world atlas (or other source) tells you about the highest mountain
in this region? What is the name of that mountain?

(c) In Colombia, coffee grows best at altitudes between 1000 and 2100
meters. Define a cost function that indicates where it is best to grow
coffee on the region defined by the topographical map of Colombia.
Formulate and solve a problem that evolves where coffee growers
should live in Colombia (assuming they live near their farm). Illus-
trate the performance of the algorithm. Do the points where the
population evolves to correspond to where coffee is actually grown in
Colombia (e.g., “la zona cafetera”)?

Design Problem 14.3 (Genetic Algorithms for Approximator Struc-
ture Construction)�: Read Design Problem 11.2, where we give ideas
on how to construct the structure of an approximator using gradient-type
algorithms. In this problem you want to develop a genetic algorithm that
can evolve the structure of an approximator for a particular function ap-
proximation problem.

(a) First, you must conduct some background research. Search the liter-
ature, evaluate existing methods, and summarize these.

(b) Using ideas from the literature, and perhaps your own ideas, design
a genetic algorithm that can construct the structure of a function

Kwang_Y_Lee@baylor.edu

644 The Genetic Algorithm

0 5 10 15 20 25
0

5

10

15

20

25

x

y

Fitness function (contour map)

Figure 14.16: Contour plot of surface in Figure 18.10 with approximations to
genetic algorithm, crossover option 2.

approximator. You must decide whether to use a genetic algorithm in
conjunction with a least squares or gradient method, and all the issues
associated with representation of the approximator in the genetic
algorithm. Test the performance of the algorithm. Hint: Use the
function approximation problem that was used throughout Part III
and a fitness function that quantifies the inverse of the approximation
error as measured by some test set.

Design Problem 14.4 (Artificial Immune Systems and Evolutionary
Algorithms)�: First, see the discussion in the “For Further Study”
section of this part. Second, study [125, 124] on artificial immune systems.

(a) Choose an artificial immune system and simulate it. Choose one that
provides the capability for either learning or optimization, or both.

(b) Explain in detail the relationships between the algorithm you imple-
ment in (a) and the standard genetic algorithm. Be sure to identify
the fitness function, selection, crossover, and mutation analogies.

Kwang_Y_Lee@baylor.edu

14.7 Exercises and Design Problems 645

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Generation

B
es

t,
av

er
ag

e,
 a

nd
 w

or
st

 fi
tn

es
s

Best and worst fitness vs. generation

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

30

Generation

B
es

t i
nd

iv
id

ua
ls

Best individuals vs. generation

Figure 14.17: Fitness and optimization parameter evolution, with approxima-
tions to genetic algorithm, crossover option 2.

-84 -82 -80 -78 -76 -74 -72 -70 -68 -66 -64

-4

-2

0

2

4

6

8

10

12

Degrees Longitudinal (- = west of Meridian of Greenwich)

D
eg

re
es

 N
or

th
 o

f E
qu

at
or

 (
-

=
 s

ou
th

)

Topographical map of Colombia

Figure 14.18: Topographical map of region around Colombia, South America.

Kwang_Y_Lee@baylor.edu

